Fractions (fillable notes)

May 11th

Learning Intentions

\square I can see fractions as PARTs of a WHOLE
\square I can represent fractions in different ways
\square I can recognize equivalent fractions

Fractions -

A fraction is made up of:

Where do we see fractions in real life?

- We use fractions in baking, and see them when we divide snacks with our friends! We see them while shopping $1 / 2$ off

Fractions can be represented in different ways:
Let's look at common fractions and different ways they can be represented

Word	Fraction	Picture	Decimal	Percent

Questions to consider:

1. Why did I not list $2 / 4$? or $5 / 10$?
2. What pattern do you notice between the decimals and percents?
3. How could I find $2 / 3$ if I know that $1 / 3$ is 0.33 or 33% ?
4. What would any fraction that has the numerator and denominator the same be? Example: 5/5?
5. How could I find $4 / 10$?
6. If we know that the line in a fraction means 'division' how can we use that to find the decimal?
7. If we have the decimal how could we use that to find the percent?

Finding the Decimal and Percent of a fraction:

1. Divide the numerator by the denominator (here is how you find the decimal)

- 8/10-8 divided by $10=0.8$

2. Multiply the decimal by 100 (here is how you find the percent)

$$
\circ \quad 0.8 \times 100=80 \%
$$

Comparing Fractions

Understanding basic fractions allows us to understand how to compare different fractions. Visuals also help us to easily compare them.

Example: Which is bigger? $2 / 4$ or $4 / 8$

Being able to see these fractions visually allows us to easily see that they are equal or EQUIVALENT *remember that this words means - the same

How many equivalent fractions can you find? How can you PROVE that they are the same? Record them below

Fractions (full notes)

May 11th

Learning Intentions

- I can see fractions as PARTs of a WHOLE
\square I can represent fractions in different ways
\square I can recognize equivalent fractions

Fractions - are PARTS of a WHOLE. They are always out of 100
A fraction is made up of:

Numerator (Part)
*The line means division

Denominator (How many parts make up a Whole)

Where do we see fractions in real life?

- We use fractions in baking, and see them when we divide snacks with our friends! We see them while shopping $1 / 2$ off

Fractions can be represented in different ways:
Let's look at common fractions and different ways they can be represented

Word	Fraction	Picture	Decimal	Percent
one half	$1 / 2$		0.5	50%

one third	$1 / 3$		0.33	33\%
one quarter	$1 / 4$		0.25	25\%
three quarters	$3 / 4$		0.75	75\%
one fifth	1/5		0.20	20\%
one tenth	1/10		0.10	10\%

Questions to consider:

1. Why did I not list $2 / 4$? or $5 / 10$?

- They are all $1 / 2$ or 50%

2. What pattern do you notice between the decimals and percents?

- They are the same numbers but the decimal place has moved

3. How could I find $2 / 3$ if I know that $1 / 3$ is $\mathbf{0 . 3 3}$ or $\mathbf{3 3} \%$?

- Add another $1 / 3(33+33=0.66$ or $66 \%)$

4. What would any fraction that has the numerator and denominator the same be? Example: 5/5?

- 100% or 1 whole

5. How could I find $\mathbf{4 / 1 0}$?

- If $1 / 10$ is 10% then just add 3 more $=40 \%$ or think $4 / 10$ is the same as 40/100

6. If we know that the line in a fraction means 'division' how can we use that to find the decimal?
7. If we have the decimal how could we use that to find the percent?

Finding the Decimal and Percent of a fraction:

3. Divide the numerator by the denominator (here is how you find the decimal)

- 8/10-8 divided by $10=0.8$

4. Multiply the decimal by 100 (here is how you find the percent)

$$
\circ \quad 0.8 \times 100=80 \%
$$

Comparing Fractions

Understanding basic fractions allows us to understand how to compare different fractions. Visuals also help us to easily compare them.

Example: Which is bigger? $2 / 4$ or $4 / 8$

Being able to see these fractions visually allows us to easily see that they are equal or EQUIVALENT *remember that this words means - the same

How many equivalent fractions can you find? How can you PROVE that they are the same? Record them below

